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Abstract Invasive weed impact estimates are

needed to determine whether or not weeds

warrant costly control measures. Typically, land

managers seek local weed impact estimates (e.g.

ranches, parks) and policy-makers want to know

how weeds are impacting entire regions. Our goal

was to provide local and regional impact estimates

for a ubiquitous invasive weed: leafy spurge

(Euphorbia esula L.). The specific impacts we

looked at related to desired species biomass

production, livestock carrying capacities, and

grazing land values. Our basic approach was to

use an empirical model that characterizes weed

biomass across the landscape in combination with

another empirical model that predicts weed

impact from weed biomass. Our investigation

revealed that, without on-site plant biomass data,

site-specific leafy spurge impacts are highly uncer-

tain. Supplementing our general predictive model

with small quantities of on-site data increased

precision considerably. For the 17-state region we

considered, 95% Bayesian credibility intervals

indicated leafy spurge reduces cattle carrying

capacities by 50–217 thousand animals a year

and reduces grazing land values by 8–34 million

dollars a year. Additional plant biomass data from

randomly selected, leafy spurge-infested sites

would shrink these fairly wide intervals.

Keywords Competition � Forage � Grassland �
Impact assessment � Livestock � Model �
Parameter estimation � Rangeland � Uncertainty �
Weed management

Introduction

In selecting strategies for dealing with invasive

weeds, resource managers compare predicted

outcomes of multiple candidate strategies (Wilk-

erson et al. 2002; Odom et al. 2005). Intensive

strategies (e.g. herbicides, revegetation, biological

control) are selected when their costs and risks

are considered mild in comparison to the severity

of weed impacts. Conversely, when intensive

weed management will have severe costs and

risks, and weed impacts are comparatively mild,

conservative strategies (e.g. reduced stocking

rates, containment protocols, or inaction) are

more sensible. Unfortunately, weed managers

and policy-makers are usually not provided with

accurate impact estimates for the relevant spatial

scales, so it is difficult for them to decide whether
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intensive or conservative strategies are better in

any given situation.

Some invasive weed management strategies,

such as targeted grazing, herbicides, and desired

species seeding, do not greatly impact areas

surrounding sites of application. For example,

when domestic sheep are used to control leafy

spurge (Euphorbia esula L.) (Olson and Walland-

er 1998), no risks (e.g. overgrazing) or benefits

(e.g. weed control) accrue outside the fence

confining the animals. In cases like these, where

weed management costs and risks are localized,

site-specific weed impact estimates should drive

decision-making (Luschei et al. 2001). Other

weed management strategies (and policy mea-

sures) exact costs and provide benefits across

entire regions, and in these cases regional weed

impact estimates are of principle interest. Exotic

arthropod biological control agents are a prime

example (Stiling 2004; Louda et al. 2005). These

agents spread from release sites, and over time

their distribution can come to match or exceed

that of the target weed (Baars and Heystek 2003).

Whether estimating local or regional weed

impacts, data on weed density or biomass per unit

area are needed, because a weed’s competitive

impact is strongly related to its abundance (e.g.

Cousens 1985; Vila et al. 2004), and abundances

vary widely from site to site (e.g. Lym and

Messersmith 1990; Ortega and Pearson 2005). In

addition to weed abundance data, models that

predict impact from weed abundance are also

needed (e.g. Spitters 1983; Jasieniuk et al. 2001;

Grekul and Bork 2004).

Once an impact model and weed abundance

data are in hand, estimating local weed impacts is

conceptually straightforward. Commonly used

statistical tools can be applied to random weed

abundance samples and the resultant statistical

estimates (e.g. mean weed abundances) can be

plugged into impact models (e.g. Rinella and

Sheley 2006).

In comparison to local weed impacts, sampling

effort and analytical requirements are greater

when regional weed impacts are the focus. To

estimate regional impacts, random weed abun-

dance samples must be collected from a random

sample of weed-infested sites. In addition to being

more practically burdensome to collect, this kind

of two-level hierarchical dataset is more difficult

to analyze. Assembling and analyzing hierarchical

weed data is our central focus in this paper.

This paper describes how we used data from

many sites to estimate local and regional weed

impacts. The impacts of interest related to desired

species biomass production, cattle carrying capac-

ities, and grazing land values. To estimate local

weed impacts, we applied a weed impact model to

on-site weed biomass samples. In doing this, we

paid careful attention to key sources of prediction

uncertainty (i.e. uncertainty about impact model

parameters, uncertainty about local leafy spurge

and desired species biomasses). In estimating

regional impacts, we focused on the coterminous

17-state area west of Minnesota to Texas. Leafy

spurge is a high-profile invader in this region,

hence a pool of spatially distributed biomass data

are available. Additionally, Duncan et al. (2004)

recently estimated the area infested by leafy

spurge within the region, so we were able to scale

our estimate to the appropriate infestation size

(sensu Parker et al. 1999)

Materials and methods

We developed two models. The leafy spurge

impact model characterizes leafy spurge effects

on associated species biomass production. The

plant biomass model describes leafy spurge and

associated species biomass production at individ-

ual sites and averaged over a 17-state region. By

plugging simulated values from the biomass

model into the impact model, we estimated leafy

spurge impacts at a specific site in North Dakota

and across a 17-state region. The North Dakota

analysis is used to show how on- and off-site data

can be used together to estimate weed impacts for

any site of interest. The regional analysis esti-

mates some damages caused by leafy spurge in

the western U.S.

The leafy spurge impact model

Experimental design

To develop a model that predicts associated

species biomass from leafy spurge biomass, we
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used data from 2 field experiments (hereafter

referred to as Experiment 1 and Experiment 2).

These experiments were conducted at the Mon-

tana State University Arthur H. Post Research

Farm near Bozeman, MT. In each experiment, 4

Kentucky bluegrass (Poa pratensisL.) and 6

western wheatgrass (Pascopyrum smithii Rybd.)

seeding rates and 6 leafy spurge seedling densities

were combined in 1.0 · 1.0-m plots in every

possible density combination (4 bluegrass seed

rates · 6 wheatgrass seed rates · 6 spurge

seedling densities · 2 experiments = 288 plots).

Kentucky bluegrass and western wheatgrass were

used because they commonly grow in association

with leafy spurge. Grass seeds were uniformly

hand-sown into Experiment 1 plots in June 1998

and into Experiment 2 plots in August 2000.

Leafy spurge seedlings were planted at even

spacing in early May 2000, so grasses were

established before leafy spurge in Experiment 1

and after leafy spurge in Experiment 2. Rinella

and Sheley (2005b) explain Experiments 1 and 2

in full detail.

Data collection

Leafy spurge and grass biomass were harvested

by clipping at ground level in August 2002 when

repeated plant height measurements indicated

plots were at peak standing crop. To avoid

unrepresentative growing conditions near plot

edges, only the inner 85 · 85-cm plot area was

harvested. Leafy spurge and grass biomass sam-

ples were weighed after drying to constant weight

at 50�C.

Analysis

Because we used Bayesian statistics, the param-

eters of our models are estimated as probability

distributions. We use quantiles to summarize

these distributions. The 2.5–97.5% quantile inter-

val (i.e. 95% Bayesian credibility interval) is

similar to a 95% confidence interval, but with a

more straightforward interpretation. The 95%

credibility interval is interpreted simply as having

a 95% chance of containing the true parameter

value.

Leafy spurge biomass, as well as several con-

trol variables (e.g. experiment, seeding rate),

were evaluated as predictors in linear regression

models. The response variable of the models was

combined western wheatgrass and Kentucky

bluegrass biomass. The two grasses were com-

bined because they respond similarly to leafy

spurge competition (Rinella and Sheley 2005c, b).

The regression coefficient of interest was the one

that multiplies leafy spurge biomass (bw). Bayes

factors were used to identify the model most

consistent with the data (Kass and Raftery 1995).

As we had no prior knowledge of the model’s

parameter values, a standard noninformative

probability distribution served as our prior distri-

bution of regression parameters (Gelman et al.

2004, p. 355). With this prior, the posterior

probability distribution of the beta coefficient

vector (b) given the random error variance r2
� �

is

multivariate normal (Gelman et al. 2004, p. 356):

p bjr2
� �

� N b̂;VBr2
� �

ð1Þ

where b̂ is the least-squares estimate of the

regression coefficient vector and Vb = (XT X)–1.

The matrix X is the n · (k + 1) (n = number of

plots, k = number of predictors) predictor data

matrix with a column of 1’s prepended. It can be

shown that the marginal posterior distribution of

r2 given response data (y) has a scaled inverse

chi-square distribution with n–k degrees of

freedom and scale parameter equal to the

regression mean square error (s2):

p r2jy
� �

� Inv-v2 n� k; s2
� �

ð2Þ

A random draw from the posterior distribution

of regression parameters is obtained by sampling

r2 from Equation [2], inserting this deviate into

Eq. (1), and then sampling the distribution given

by Eq. (1). No starting values or discarding of

simulations (i.e. burn in) is required with this

particular linear model. All simulations were

done using Mathematica 5.1 (Wolfram 2003).

To determine if the impact model accurately

describes leafy spurge impacts across a range of

sites, we compared the 95% credibility interval

for the leafy spurge biomass coefficient (bw) to
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coefficient estimates from 28 leafy spurge removal

experiments conducted throughout the western

U.S. We conducted some of the removal experi-

ments with the explicit purpose of evaluating

model performance. The other experiments, which

we meta-analyzed to derive bw estimates, were

conducted by others for the purpose of testing leafy

spurge herbicides (Maxwell 1984; Gylling and

Arnold 1985; Lym and Messersmith 1985, 1994;

Lym 2000; Markle and Lym 2001). Whereas the

removal experiment data were helpful for testing

the model, potential problems with the experi-

ments dissuaded us from relying on them for model

development. One prospective problem with the

removal experiments was that herbicides were

used to remove leafy spurge, and the specific

chemicals used sometimes injure grasses. Rinella

and Sheley (2005a) detail the plant removal

experiments as well as our protocol for deriving

beta estimates from these experiments.

The plant biomass model

Biomass data

To estimate leafy spurge and associated species

biomasses across the 17-state region, we searched

the literature and amassed data or sample statis-

tics from nearly 100 leafy spurge-infested sites. In

addition to being necessary for estimating regio-

nal weed impacts, this meta-dataset also im-

proved impact estimates for the individual North

Dakota site. Only 4 on-site plant biomass samples

were available for the North Dakota site. It would

be virtually impossible to estimate local plant

biomass means, variances, and covariances from

only 4 samples without statistically ‘borrowing

strength’ from off-site data (i.e. the meta-dataset).

Several culling criteria were applied to the

meta-dataset to ensure the data were gathered

under realistic field conditions and contained

minimal bias. These criteria were: (1) leafy spurge

biomass had to be measured, as opposed to stem

density or cover; (2) no tilling or mowing of study

sites; (3) plant biomass measured around the time

of peak standing crop; and (4) plant biomass not a

criterion in site selection. Employing criterion (4)

required us to contact each researcher and ascer-

tain their site selection criteria. Data were omit-

ted if weed density or biomass was a criterion for

selecting research sites; e.g. some research proto-

cols called for ‘‘densely leafy spurge-infested

sites’’. After culling, our dataset contained data

or sample statistics from 19 sites (Table 1). The

original study objectives varied but were irrele-

vant to our analysis, because we exclusively used

data from units that were not experimentally

manipulated (the untreated controls).

Most study sites were measured during multi-

ple growing seasons. Because some of the multi-

year studies averaged data over years, we could

not estimate year effects. Therefore, our analysis

averaged over annual variation. It was possible to

construct ‘by year’ scatter plots for some of the

sites, and these plots showed that between-year

variation within a site was small in comparison to

variation among sites. Therefore, incorporating

year effects would not appreciably alter our

results.

Quadrat size varied between studies. Given

that the leafy spurge impact model is based on

1.0-m2 plots, raw quadrat values from quadrats

that were smaller than 1.0 m2, were added

together such that each data point ultimately

came from an area as close to 1.0 m2 as possible.

Quadrats that were combined were spatially

clustered; they were sub-samples from the same

plot or adjacent samples from the same transect.

When raw data were not provided and quadrats

were not 1.0 m2, sample size was adjusted so that

means reflected 1.0-m2 equivalents. Scaling mea-

surements to 1.0 m2 provided sampling variances

of similar magnitude. This is favorable because

our plant biomass model assumes between-quad-

rat variances are similar across sites.

Analysis of biomass data

Since data from some study sites were incomplete

(Table 1), we used a multiple imputation routine

to simulate missing data values (Congdon 2001;

Gelman et al. 2004). Multiple imputation uses

available data to simulate the distributions of

missing data. We simulated 25 sets of missing

data values and analyzed each of these. By

averaging over the imputation datasets, uncer-

tainty about missing data values was incorporated

into our analysis.
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A hierarchical one-way normal random effects

model was used to estimate plant biomass param-

eters (Gelman et al. 2004). This model allowed us

to jointly estimate regional and local plant abun-

dances. For our analysis, the model relied on

bivariate normal distributions. The first dimen-

sion of the distributions describes leafy spurge

biomass and the second dimension describes

associated species biomass. We used a standard

noninformative prior distribution for the model

parameters (Gelman et al. 2004 Chapter 5.4).

With this prior, and conditional on the data (y)

and all other parameters, the posterior distribu-

tion of the site j mean (hj ) is independent of the

other site means and is bivariate normally dis-

tributed

p hjjl;R;K; y
� �

� N ĥj;Vhj

� �
ð3Þ

where:

ĥj ¼ K�1 þ njR
�1

� ��1
K�1lþ njR

�1�yj

� �
ð4Þ

and:

Vhj
¼ K�1 þ njR

�1
� ��1 ð5Þ

Sample size for site j is given by nj, and �yj is the

two-dimensional site j sample mean. Other

symbols, which are described in detail below,

represent within-site covariance Rð Þ, between-

site covariance (L), and the mean of the hj¢s
(i.e. l).

The conditional posterior distribution of the

overall mean (i.e. the mean of the site means) is

bivariate normal:

p ljh;R;K; yð Þ � N l̂;K=Jð Þ ð6Þ

where:

l̂ ¼ 1

J

XJ

j¼1

hj ð7Þ

and the total number of sites is given by J.

The within-site covariance matrix Rð Þ is com-

prised of the leafy spurge variance r2
w

� �
, associ-

ated species variance r2
g

� �
, and the covariance

between leafy spurge and associated species

rwg

� �
.

X
¼ r2

w rwg

rwg r2
g

� �
ð8Þ

This matrix describes quadrat-to-quadrat

variation within a site. It is assumed that within-

site variances and covariances do not change from

site to site. This is a rather minor assumption for

our purposes, and it greatly reduced the number

of parameters to be estimated. The conditional

posterior distribution of
P

is an inverse-Wishart

distribution with n degrees of freedom (n = total

number of data points):

p
X
jh; l;K; y

� �
� Inv-Wishartn R̂

� �
ð9Þ

where:

X̂
¼ 1

n

XJ

j¼1

Xnj

i¼1

yi;j � hj

� �
yi;j � hj

� �T ð10Þ

and the yi,j are the two-dimensional data points.

The between-site covariance matrix (L) is

comprised of the between-site leafy spurge (sw
2 )

and associated species (sg
2) variances, and their

covariance (swg).

K ¼ s2
w swg

swg s2
g

� �
ð11Þ

Eq. (11) describes site-to-site variation in mean

leafy spurge and associated species biomasses.

The conditional posterior distribution of L is an

inverse-Wishart distribution with J-1 degrees of

freedom:

p Kjh; l;
X

; y
� �

� Inv-WishartJ�1 K
^� �

ð12Þ

where:

K
^
¼ 1

J � 1

XJ

j¼1

hj � l
� �

hj � l
� �T ð13Þ

We used Gibbs sampling to simulate the joint

posterior probability distribution of plant biomass
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model parameters p h; l;R;Kjyð Þ (Gelman et al.

2004). To draw from this distribution, we assigned

sample means and variances as starting values

and then sequentially drew from the marginal

posterior distributions (Eqs. (3), (6), (9), (12)).

Simulation convergence was assessed by moni-

toring two Gibbs sequences (Gelman et al. 2004,

Chapter 11.6).

Simulating leafy spurge impacts

In simulating the probability distribution of leafy

spurge impacts for site j, we repeated the following

steps until estimates of interest (i.e. quantile

values) converged: (1) Insert a drawn value of bw

into the impact model; (2) Use drawn values for the

site mean (hj ) and within-site covariance matrix

(
P

) to simulate a large number (i.e. 500) of

quadrat-level biomass values as: yi;j � N hj;R
� �

;

(3) Insert each of the 500 sets of biomass values

(yi,j¢s) into the impact model and compute 500 leafy

spurge impact estimates (Ij¢s); (4) Average over the

Ij ¢s to calculate the expected value of weed impact

(E(Ij )). The 500 quadrat-level draws were needed

to stabilize E(Ij ) for a given value of hj and
P

. If the

impact model were linear without transformation

(it is not), no quadrat-level draws would be needed.

In the linear case, inserting hj into the impact model

would directly simulate E(Ij). But because the

impact model is non-linear, Jensen’s inequality

necessitates quadrat-level draws: E(Ij) =

E(f(yj)) „ f(E(yj )) where E(yj) = hj (Jensen 1906).

The procedure for simulating regional leafy

spurge impacts is analogous to that for simulating

site-specific impacts. We repeated the following

steps until convergence: (1) Draw a large number

(i.e. 500) of site means as: h � N l;Vhj

� �
; (2)

follow steps 1–5 of the last paragraph for each

drawn h value; (3) compute the expected value of

regional impact by averaging over the 500 site-

specific impact estimates.

Results

The leafy spurge impact model

Bayes factors indicated that the following model

best describes Experiment 1 and 2 data (Fig. 1):

ln gð Þ ¼ ln gmaxð Þ � bwwþ b�2E�ln Rþ 1ð Þ þ e

ð14Þ

where g is associated species (in this case grass

only) biomass, gmax is associated species biomass

in the absence of leafy spurge, w is leafy spurge

biomass, bw describes the impact of w on ln(g), E

is 0 for Experiment 1 and 1 for Experiment 2, R is

western wheatgrass seeding rate, b2 describes the

effect of the site by western wheatgrass seeding

rate interaction, and e � N 0; r2
� �

is random error.

Natural log transformations were used to better

meet linear regression assumptions. The E and R

terms adjust for seeding rate effects and

experiment-specific gmax (Rinella and Sheley

2005b). There is no clear need (or mechanism)

for conditioning on E and R when using the

model for prediction. Therefore, the relevant

model is simpler:

ln gð Þ ¼ ln gmaxð Þ � bwwþ e ð15Þ

The vast majority of bw values from leafy spurge

removal experiments throughout the western U.S.

are very similar to the bw credibility interval

values estimated from Experiment 1 and 2

(Fig. 2). This suggests that Eq. (15) will fairly

accurately predict leafy spurge impacts through-

out the western U.S. Also, several grass species

grew at the removal experiment sites, and this

Fig. 1 Predicted versus observed graph for model that
predicts grass biomass from leafy spurge biomass in two
field experiments. Predicted values were obtained by fixing
model parameters at the mode of their joint probability
distribution
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suggests model accuracy is similar regardless of

grass species composition.

We believe the major factors Eq. (15) does not

account for (i.e. the major contributors to e) are

measurement error and productivity variation

between quadrat locations. Productivity variation

is in part regulated by site characteristics, while

measurement variation stems from differences

between observers, and differences between mea-

surement devices. Leafy spurge and grasses were

established under uniform conditions in Experi-

ments 1 and 2 (i.e. tilled fields), and the exper-

iments were measured by a small number of

people. Therefore, e is not a broadly applicable

error term for predicting leafy spurge impacts in

the highly heterogeneous grasslands where the

weed naturally occurs. Instead, the relevant

sources of productivity and measurement varia-

tion are more logically included by estimating

sampling variation, which we did with our plant

biomass model. Because e is redundant with

sources of variation captured by our plant bio-

mass model, we excluded this term from the

remainder of our analysis.

Solving Eq. (15) for ln (gmax), dropping e, and

exponentiating gives:

gmax ¼ gebww ð16Þ

Eq. (16) is biomass production in the absence of

leafy spurge. Subtracting associated species

biomass production in the presence of leafy

spurge (g) gives our leafy spurge impact model:

I ¼ gebww � g ð17Þ

We define leafy spurge impact (I) on associated

species biomass production as associated species

biomass with leafy spurge absent gebww
� �

minus

associated species biomass with leafy spurge

present (g).

The plant biomass model

Averaged over the 19 sites in our plant biomass

dataset, grasses produced the most biomass

(66%) followed by leafy spurge (33%) and other

forbs and shrubs (7%). Because forb and shrub

biomasses were low, we combined these plant

groups with grasses for analysis. In a second

analysis we omitted forbs and shrubs from the

dataset instead of combining these plant groups

with grasses. Results from this second analysis

were extremely similar to the results we obtained

by lumping forbs and shrubs with grasses. Thus

we do not present results from the analysis with

forbs and shrubs omitted.

It was necessary to transform the biomass data

to meet normality assumptions. We used a square

root transformation because it often works well

for plant abundance data (Kuehl 1994). To

evaluate the reasonableness of the transforma-

tion, and our plant biomass model in general, we

simulated seven datasets. Simulated datasets were

compared to the raw data (Fig. 3). Simulated

datasets tended to contain small numbers of

values somewhat larger than the largest values

in the raw data. Other than this minor disparity,

we detected no systematic differences between

simulated and actual data. Therefore, we con-

cluded that the model reasonably depicts plant

biomass means, variances, and covariances.

The biomass model was used to estimate plant

abundance parameters for each site in the dataset

as well as the entire 17-state region (Table 1).

Inspecting these parameter estimates yields in-

sight into model performance. Model parameters

that are means (lw, lg, hw, hg) are presented in

Fig. 2 Estimates of leafy spurge competitive impact
parameter from two planting experiments conducted near
Bozeman, MT. (horizontal bar) and from 28 leafy spurge
removal experiments conducted throughout the western
U.S. (histogram). The horizontal bar denotes the 95%
credibility interval for the impact parameter (bw), and the
histogram represents point estimates for the parameter
from the removal experiments
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back-transformed units (g m–2), while variances

and covariances remain untransformed (
ffiffiffiffiffiffiffiffiffiffiffiffiffi
g m�2

p
Þ

(Table 1). Site means are estimated as covariance

matrix-weighted averages of within-site sample

means �yj

� �
and the overall mean (l) (see Eq. (4)).

The between-site covariance matrix (L) had

considerably larger parameter estimates than the

within-site covariance matrix Rð Þ (Table 1). As a

result of between-site variation being greater than

within-site variation, posterior medians for par-

ticular sites resemble the corresponding sample

means, especially for sites with large sample size

(Table 1). If R parameters were greater-valued,

posterior medians would be more appreciably

pulled toward the overall mean.

The between-site covariance swg is positive

(Table 1), suggesting that both leafy spurge and

its inter-specific competitors respond positively to

the same environmental factors (e.g. soil depth,

soil water, nitrogen). Within-site covariance rwg is

slightly negative. This suggests that, at individual

sites, inter-specific competition is intense enough

to override the positive covariance. Similarly,

Hagar and Vinebrooke (2004) found a negative

relationship between weed and associated species

biomass when they studied the invasive weed

Fig. 3 Raw data (a)
describing leafy spurge
and grass biomass
production at 13 sites
distributed throughout
the western U.S., and
draws (b) from the
posterior predictive
distribution of new data
from these same sites
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Lythrum salicaria L. at several sites within a two-

county region.

Site-specific estimates of plant densities

and leafy spurge impact

We use data from Fargo, ND to demonstrate how

the impact and biomass models can be used in

concert to estimate local leafy spurge impacts

(Lym and Tober 1997). The Fargo data were

omitted from our overall analysis because the site

was tilled. If it is known that leafy spurge occupies

the Fargo site, but no plant biomass data are

available, nj is set at zero in Eqs. (4) and (5). In

this way, plant densities at Fargo are estimated

from the 19 measured sites. Because variation

between the 19 sites was extensive (i.e. l was

imprecisely estimated and L parameters are

large), the 19 sites provide limited information

about the mean of any one unmeasured site.

Consequently, biomass estimates for the unmea-

sured site are quite imprecise (Table 2, rows 1

and 5). In exploring effects of adding to the

dataset only leafy spurge (w) or associated species

(g) samples, our imputation routine was used to

fill in the missing data values. When estimating

leafy spurge biomass, 4 on-site leafy spurge

samples reduced the uncertainty (i.e. shrank

quantile interval width), as did 4 associates

species samples, but if leafy spurge samples were

included, associated species samples did not

further reduce the uncertainty (Table 2, rows

that begin with w). Analogous results were

obtained for associated species biomass (Table 2,

rows beginning with g).

When estimating leafy spurge impact at Fargo,

4 on-site leafy spurge samples reduced uncer-

tainty about I, as did 4 associated species samples

(Table 2). When leafy spurge samples were used

in estimating impact, associated species samples

did not further reduce the uncertainty.

Estimates of leafy spurge impact on a 17-state

region

In this section, we consider the monetary forage

value of plants displaced by leafy spurge in a large

region. Working with monetary forage values

enabled us to estimate weed impacts on cattleT
a
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carrying capacity and grazing land values

(Table 3). Cattle are an effective conversion

factor for expressing leafy spurge impacts because

these animals typically do not consume the weed

(Lym and Kirby 1987), and cattle are the region’s

predominate class of livestock. Sheep are a

distant second to cattle with cattle outnumbering

sheep about 12–1 (USDA 2004c, b). Basing our

analysis on sheep would drastically reduce the

impact estimates, because sheep can consume

considerable quantities of leafy spurge without

experiencing detrimental health effects (Landgraf

et al. 1984; Lym et al. 1997).

We used the following information to derive

the regional impact estimates of Table 3. An

animal unit month (AUM) is the amount of

forage needed to sustain a cow and a calf for one

month. One AUM is defined as 359 Kg of air dry

forage, and the estimated value of one privately

owned AUM is $13.10 (USDA 2004a). On

grazing lands in the western U.S., the ‘‘take half,

leave half’’ guideline is widely used to limit

overgrazing. Managers that employ this guideline

allow livestock to remove approximately 50% of

the net annual primary production. Therefore, in

estimating weed impacts on cattle carrying capac-

ity (Table 3, row 3) and grazing land value

(Table 3, row 2), we assumed cattle would be

allowed to utilize 50% of the forage increase that

results from leafy spurge removal. Finally, Dun-

can et al. (2004) estimated that leafy spurge

infests an area 1,487,237 ha in size in the region.

Discussion

An earlier analysis by Leitch et al. (1996) esti-

mated that leafy spurge reduces cattle carrying

capacity by 90,000 cows in the 4-state region of

North Dakota, South Dakota, Montana, and

Wyoming. This estimate is based on a 657,000-

ha infestation size. If this estimate is scaled to the

infestation size we used, the carrying capacity

reduction is estimated to be 204,000 cows.

Table 3 Quantiles characterizing annual leafy spurge impacts on forage production, cattle carrying capacity, and grazing
land value within a 17-state region

Variable Quantiles

2.5% 25% Median 75% 97.5%

Impact on forage production (millions of Kg) 446 678 862 1,121 1,942
Impact on grazing land value (millions of dollars) 8 12 16 21 36
Impact on carrying capacity (thousands of cattle) 51 79 100 130 225

Table 2 Quantiles characterizing annual leafy spurge w and associated species g biomass production (g m–2) and leafy
spurge impact on associated species biomass production I(g m–2) at site near Fargo, ND

Variable On-site data Sample mean Quantiles

2.5% 25% Median 75% 97.5%

g none 95.6 19.4 72.3 100.2 132.3 210.3
g w samples 95.6 12.8 41.3 59.6 82.0 128.8
g g samples 95.6 58.3 82.4 96.2 110.9 142.2
g w and gsamples 95.6 56.8 81.8 93.8 108.5 140.2
w none 71.0 8.4 47.5 79.7 118.8 213.2
w w samples 71.0 31.9 53.9 67.1 81.5 114.5
w g samples 71.0 31.0 60.3 81.0 105.8 161.3
w w and gsamples 71.0 35.9 57.4 70.6 85.2 117.3
I none 10.1 33.3 54.9 92.4 231.4
I w samples 9.5 21.6 31.2 45.0 90.3
I g samples 19.7 37.4 53.1 74.8 140.9
I w and g samples 20.3 34.6 47.7 58.5 102.7
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Whereas this estimate does reside within our 95%

credibility interval (51,000–225,000 cows) it is

more than double our median estimate

(100,000 cows). Lietch et al. (1996) caution that,

‘‘Relationships and models used in [their] study

lack direct empirical foundations.’’ Our leafy

spurge impact estimate is likely more reliable

than the older estimate because it is based on

empirically derived models that represent key

sources of uncertainty.

Whereas our analysis accounted for important

sources of error that will naturally hinder any

attempt to quantify invasive species impacts, we

did ignore uncertainty about some parameters.

Most importantly, it is highly unlikely that leafy

spurge infests exactly 1,487,237 ha (Duncan et al.

2004).

While our regional leafy spurge impact esti-

mates are informative, considerable uncertainty

remains (Table 3). What information is needed to

more precisely estimate the costs of this invasive

species? When simulating regional impacts, the

only parameters that caused uncertainty were bw

and the overall site mean (l) and variance (L); all

other parameters were averaged over in simulat-

ing the expected value of weed impact (E(Ij)).

The bw parameter was estimated very precisely.

In fact, when we fixed bw at the posterior

distribution mode and reran the analysis, quantile

interval widths didn’t shrink appreciably. There-

fore, uncertainty about bw plays a minor role, and

more precisely estimating regional leafy spurge

impacts will require more precisely estimating l
and L. The only readily apparent way to reduce

uncertainty about these parameters is to collect

additional biomass data from randomly selected,

leafy spurge-infested sites.

The hierarchical model was very useful for

quantifying regional plant abundances and weed

impacts. To see why this model is likely superior

to other potential models, it is helpful to consider

an alternative approach for estimating regional

weed impacts. The alternative approach would

construct 19 nonhierarchical models; one for each

site in the meta-dataset. Then, regional leafy

spurge impacts would be estimated by averaging

over simulated quadrat-level values for just these

19 sites. An important limitation of this nonhier-

archical approach becomes apparent by concep-

tualizing data from 19 newly measured sites. If the

nonhierarchical analysis were repeated on data

from 19 newly measured sites (i.e. a new sample

of sites), the new results would certainly differ

somewhat from the original results. Nonhierar-

chical models would ignore this sample-to-sample

variation. In contrast to nonhierarchical models,

the hierarchical model employs a probability

distribution of site means (i.e. Eq. (3)) to account

for sample-to-sample variation (i.e. variation

among samples of sites).

The hierarchical model also proved advanta-

geous for estimating local plant biomass param-

eters and weed impacts. An alternative approach

to estimating local weed impacts would forgo the

precision weighting (Eq. (4)) and use exclusively

site j data to estimate site j parameters. At a

glance, this seems rational because it eliminates

the chance of off-site data distorting site-specific

parameter estimates. The problem with such an

approach is that, presumably, resource managers

will not take the time to gather large numbers of

on-site samples. And, unless off-site data are

factored into the analysis, a small number of

on-site samples will be insufficient for estimat-

ing the necessary on-site parameters (i.e.

hw; hg; rw; rg; rwgÞ. Only by borrowing strength

from off-site data were we able to reasonably

estimate the necessary site-specific parameters.

Without information on invasive weed impacts,

costs and benefits of weed management actions

cannot be compared. Over the last few decades,

considerable data have amassed on some of the

more notorious invasive weeds. Many of these

data describe weed abundances, and with some

weeds, a few of the data describe impact per unit

weed abundance. Collectively, these data can tell

us something of the toll invasive weeds exact

across various spatial scales.
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